Overparameterization
Belkin's Claim:
(1) If we have a solution manifold and (2) if this manifold has curvature then the loss function is not locally convex.
Proof
Assume we have a solution manifold.
\[f(y) \geq f(x) + \nabla f(x)^T(y-x)\]
Lemma
Minimizers of Convex Function form a Convex Set
- Let \(x_1, x_2\) be minimizers of a convex function \(f\). i.e. \(\forall x \ f(x) \geq x_1, x_2\)
- Then \(\forall \alpha \in (0,1), \alpha x_1 + (1-\alpha x_2)\) is also a minimizer of \(f\).