Skip to content

Kernels

These notes are taken from the following lectures: Lecture

Definitions

Dual Space

Let \(X\) be a vector space. Then the dual space of \(X\), denoted by \(X^*\), is the set of linear bounded functions on \(X\).

Reproducing Kernel Hilbert Spaces

  • Let \(\mathcal{X}\) be a set
  • Let \(F(\mathcal{X}, \mathcal{R})\) be the vector space of funcions defined on \(\mathcal{X}\). i.e.
\[f_1, f_2 \in F(\mathcal{X}, \mathcal{R}) \implies \alpha f_1 + \beta f_2 \in F(\mathcal{X}, \mathcal{R})\]
  • Then \(\mathcal{H}(\mathcal{X}, \mathcal{R}) \subset F(\mathcal{X}, \mathcal{R})\) is a Reproducing Kernel Hilbert Space if

    1. \(\mathcal{H}(\mathcal{X}, \mathcal{R})\) is a subspace of \(F(\mathcal{X}, \mathcal{R})\)
    2. \(\Big(\mathcal{H}(\mathcal{X}, \mathcal{R}), \langle \cdot, \cdot \rangle _{\mathcal{H}} \Big)\) is a Hilbert Space
    3. Evaluation Functionals, \(\textrm{Apply}_x\), are continuous
    \[ \textrm{Apply} : \mathcal{X} \to \mathcal{H}(\mathcal{X}, \mathcal{R}) \to \mathcal{R} \]

Note:

  • We can think of Euclidean Spaces as a function space.
\[\mathcal{R} ^n \equiv \Big( F(\textrm{Fin} \ n, \mathcal{R}), \langle z_1, z_2 \rangle _{F} := \sum _{i=1}^n z_1(i)z_2(i)\Big)\]
  • We can generalize this structure to \(l^2(\mathcal{X})\)
\[\begin{align*} l^2(\mathcal{X}):= \Big\{ f \mid f:\mathcal{X} \to \mathcal{R}, \quad \sum _{x\in \mathcal{X}} |f(x)|^2 < \infty \Big\} \end{align*}\]
  • This structure (set \(+\) the norm/inner product)1 is an RKHS since
\[\| E_x \| \leq \| f \| _{l^2(\mathcal{X})}\]

Consider the following function

\[\begin{align*} &\Lambda :: \mathcal{H} \to \mathcal{H} \to \mathcal{R}\\ &\Lambda \ y \ x = \langle x, y \rangle _{\mathcal{H}} \end{align*}\]

We can re-write the signature of the function as follows:

\[\begin{align*} &\Lambda :: \mathcal{H} \to \mathcal{H}^*\\ \end{align*}\]

If \(H\) is a RKHS, then by definition, \(\textrm{Apply} \ x\) is a linear bounded functional. By Reisz representation theorem,

\[\textrm{Apply} \ x \ f = \langle r \ x, f \rangle _{\mathcal{H}} = f \ x \]

Then we can define the Kernel as follows:

\[\begin{align*} &K :: \mathcal{X} \to \mathcal{X} \to \mathcal{R} \\ &K \ x \ y = r \ x \ y = \langle r \ y, r \ x \rangle \end{align*}\]

  1. I really think the key part of this structure is the inner product