Kernels
These notes are taken from the following lectures: Lecture
Definitions
Dual Space
Let \(X\) be a vector space. Then the dual space of \(X\), denoted by \(X^*\), is the set of linear bounded functions on \(X\).
Reproducing Kernel Hilbert Spaces
- Let \(\mathcal{X}\) be a set
- Let \(F(\mathcal{X}, \mathcal{R})\) be the vector space of funcions defined on \(\mathcal{X}\). i.e.
\[f_1, f_2 \in F(\mathcal{X}, \mathcal{R}) \implies \alpha f_1 + \beta f_2 \in F(\mathcal{X}, \mathcal{R})\]
-
Then \(\mathcal{H}(\mathcal{X}, \mathcal{R}) \subset F(\mathcal{X}, \mathcal{R})\) is a Reproducing Kernel Hilbert Space if
- \(\mathcal{H}(\mathcal{X}, \mathcal{R})\) is a subspace of \(F(\mathcal{X}, \mathcal{R})\)
- \(\Big(\mathcal{H}(\mathcal{X}, \mathcal{R}), \langle \cdot, \cdot \rangle _{\mathcal{H}} \Big)\) is a Hilbert Space
- Evaluation Functionals, \(\textrm{Apply}_x\), are continuous
\[ \textrm{Apply} : \mathcal{X} \to \mathcal{H}(\mathcal{X}, \mathcal{R}) \to \mathcal{R} \]
Note:
- We can think of Euclidean Spaces as a function space.
\[\mathcal{R} ^n \equiv \Big( F(\textrm{Fin} \ n, \mathcal{R}), \langle z_1, z_2 \rangle _{F} := \sum _{i=1}^n z_1(i)z_2(i)\Big)\]
- We can generalize this structure to \(l^2(\mathcal{X})\)
\[\begin{align*}
l^2(\mathcal{X}):= \Big\{ f \mid f:\mathcal{X} \to \mathcal{R}, \quad
\sum _{x\in \mathcal{X}} |f(x)|^2 < \infty \Big\}
\end{align*}\]
- This structure (set \(+\) the norm/inner product)1 is an RKHS since
\[\| E_x \| \leq \| f \| _{l^2(\mathcal{X})}\]
Consider the following function
\[\begin{align*}
&\Lambda :: \mathcal{H} \to \mathcal{H} \to \mathcal{R}\\
&\Lambda \ y \ x = \langle x, y \rangle _{\mathcal{H}}
\end{align*}\]
We can re-write the signature of the function as follows:
\[\begin{align*}
&\Lambda :: \mathcal{H} \to \mathcal{H}^*\\
\end{align*}\]
If \(H\) is a RKHS, then by definition, \(\textrm{Apply} \ x\) is a linear bounded functional. By Reisz representation theorem,
\[\textrm{Apply} \ x \ f = \langle r \ x, f \rangle _{\mathcal{H}} = f \ x \]
Then we can define the Kernel as follows:
\[\begin{align*}
&K :: \mathcal{X} \to \mathcal{X} \to \mathcal{R} \\
&K \ x \ y = r \ x \ y = \langle r \ y, r \ x \rangle \end{align*}\]
-
I really think the key part of this structure is the inner product ↩